diff --git a/riemannian_utils/plot_results_classifiers.py b/riemannian_utils/plot_results_classifiers.py index 179bce080c78311013c73570afe86e0afd218f24..e5ad0fe049eefdc76766c875c3d441f870364f01 100644 --- a/riemannian_utils/plot_results_classifiers.py +++ b/riemannian_utils/plot_results_classifiers.py @@ -220,23 +220,65 @@ def plot_bayes(path): plt.title('Valence and Arousal Average Accuracy for 32 Test Subjects \n GB Classifier') plt.savefig('figures_plot_results/GG-GB-OFICIAL-15-36HZ.eps', format='eps', dpi=1000) -path1 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/FGMDM-OFICIAL-15-36HZ' -plot_fgmdm(path1) - -path2 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/MDM-OFICIAL-15-36HZ' -plot_mdm(path2) - -path3 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/LR-TS-OFICIAL-15-36HZ' -plot_lr(path3) - -path4 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/SVM-TS-OFICIAL-15-36HZ' -plot_svm(path4) +def plot_lr_2(path): + file = pd.read_csv(path) + print("---------------------------------------------------------------------") + print("\nLR NTS: Perfomance Valence: ", file.valence_Score_Acc_3.mean(), "% - STD: ", file.valence_Score_Acc_3.std()) + print("\nLR NTS Perfomance Arousal: ", file.arousal_Score_Acc_3.mean(), "% - STD: ", file.arousal_Score_Acc_3.std()) -path5 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/SLDA-TS-OFICIAL-15-36HZ' -plot_slda(path5) + plt.plot(file.subject, file.valence_Score_Acc_3, color='blue', linewidth=1.0, linestyle="-", marker='o', + label='Valence') + plt.plot(file.subject, file.arousal_Score_Acc_3, color='red', linewidth=1.0, linestyle="-.", marker='o', + label='Arousal') + plt.ylabel('Accuracy (in %)') + plt.xlabel('Subjects') + plt.legend() + plt.grid(True) + plt.xlim(0, 35) + plt.title('Valence and Arousal Average Accuracy for 32 Test Subjects \n LR Classifier') + plt.savefig('figures_plot_results/GG-LR-OFICIAL-15-36HZ.eps', format='eps', dpi=1000) -path6 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/KNN-TS-OFICIAL-15-36HZ' -plot_knn(path6) +def plot_slda_2(path): + file = pd.read_csv(path) + print("---------------------------------------------------------------------") + print("\nsLDA NTS Perfomance Valence: ", file.valence_Score_Acc_3.mean(), "% - STD: ", file.valence_Score_Acc_3.std()) + print("\nsLDA NTS Perfomance Arousal: ", file.arousal_Score_Acc_3.mean(), "% - STD: ", file.arousal_Score_Acc_3.std()) + plt.figure() + plt.plot(file.subject, file.valence_Score_Acc_3, color='blue', linewidth=1.0, linestyle="-", marker='o', + label='Valence') + plt.plot(file.subject, file.arousal_Score_Acc_3, color='red', linewidth=1.0, linestyle="-.", marker='o', + label='Arousal') + plt.ylabel('Accuracy (in %)') + plt.xlabel('Subjects') + plt.legend() + plt.grid(True) + plt.xlim(0, 35) + plt.title('Valence and Arousal Average Accuracy for 32 Test Subjects \n sLDA Classifier') + plt.savefig('figures_plot_results/GG-sLDA-OFICIAL-15-36HZ.eps', format='eps', dpi=1000) -path7 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/BAYES-TS-OFICIAL-15-36HZ' -plot_bayes(path7) +# path1 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/FGMDM-OFICIAL-15-36HZ' +# plot_fgmdm(path1) +# +# path2 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/MDM-OFICIAL-15-36HZ' +# plot_mdm(path2) +# +# path3 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/LR-TS-OFICIAL-15-36HZ' +# plot_lr(path3) +# +# path4 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/SVM-TS-OFICIAL-15-36HZ' +# plot_svm(path4) +# +# path5 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/SLDA-TS-OFICIAL-15-36HZ' +# plot_slda(path5) +# +# path6 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/KNN-TS-OFICIAL-15-36HZ' +# plot_knn(path6) +# +# path7 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/BAYES-TS-OFICIAL-15-36HZ' +# plot_bayes(path7) + +path8 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/LR-NO-TS-OFICIAL-15-36HZ' +plot_lr_2(path8) + +path9 = '/Users/ricklicona/PycharmProjects/deap_pBCI_Riemannian/DEAP/RIEMANNIAN_MDM/csv_results_classifiers/SLDA-NO-TS-OFICIAL-15-36HZ' +plot_slda_2(path9) \ No newline at end of file